Cucurbitane-Type Triterpenoids from the Fruit of Momordica charantia

Yumiko Kimura,[†] Toshihiro Akihisa,^{*,‡} Noriko Yuasa,[‡] Motohiko Ukiya,[‡] Takashi Suzuki,[†] Masaharu Toriyama,[†] Shigeyasu Motohashi,[†] and Harukuni Tokuda[§]

College of Science and Technology, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan, and Department of Biochemistry, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-0841, Japan

Received November 30, 2004

The structures of three new cucurbitane-type triterpenoids isolated from the methanol extract of the fruit of Japanese *Momordica charantia* were established as (19R,23E)- 5β ,19-epoxy-19-methoxycucurbita-6,23,25-trien- 3β -ol (1), (23E)- 3β -hydroxy- 7β -methoxycucurbita-5,23,25-trien-19-al (2), and (23E)- 3β -hydroxy- 7β ,25-dimethoxycucurbita-5,23-dien-19-al (3) on the basis of spectroscopic methods. These compounds were accompanied by the known (19R,23E)- 5β ,19-epoxy-19,25-dimethoxycucurbita-6,23-dien- 3β -ol (4) and (19R,23E)- 5β ,19-epoxy-19-methoxycucurbita-6,23-diene- 3β ,25-diol (5). This is the first report of the isolation of tetracyclic triterpenoids possessing a $\Delta^{23,25}$ -conjugated diene system, viz., 1 and 2, from a natural source.

The plant Momordica charantia L. (Cucurbitaceae) is cultivated as a vegetable in Asian countries. In Chinese, Indian Ayurvedic, and Indonesian Jamu traditional medicines, the fruit of this plant has been used as a bitter stomachic, a laxative, an antidiabetic, and an anthelmintic for children. Antidiabetic properties of M. charantia have been reviewed,¹ and the favorable effects on the concentration of serum and hepatic lipids in rats fed with the fruit powder have been demonstrated.² Various cucurbitane-type triterpenoid glycosides have been reported as chemical constituents of the fruit.^{1,3-6} In the course of our search for potential antitumor promoters from natural sources,^{7,8} we were especially interested in M. charantia. In this paper, we present the isolation and structure elucidation of three new cucurbitane-type triterpenoids, 1-3, along with the isolation and identification of two known cucurbitane-type triterpenoids, 4 and 5, from the MeOH extract of the dried fruit of Japanese M. charantia, which is commonly called "nigauri" or "goya".

Compound 1 possesses the molecular formula $C_{31}H_{48}O_3$ as determined from the HRFABMS ($[M + K]^+ m/z 507.3244$) as well as from its ¹³C NMR DEPT, which suggested that it was a triterpenoid with eight degrees of unsaturation. The ¹³C and ¹H NMR spectra of **1** showed the presence of four tertiary methyls, a secondary methyl, a vinylic methyl, an O-methyl, a secondary hydroxyl, two disubstituted double bonds, a terminal methylene, and an acetal methine group (Table 1). The NMR data are in good agreement with those of (19R, 23E)-5 β , 19-epoxy-19-methoxycucurbita-6, 23diene- 3β ,25-diol (5),⁹ except for the signals arising from the side-chain moiety, which suggested that 1 possesses a 19methoxy-5 β ,19-epoxy-3 β -hydroxy-10 α -cucurbitan-6-ene ringsystem.^{4,9,10} The UV absorptions at λ_{max} 240 (ϵ 4.08), 231 $(\epsilon 4.33)$, and 225 $(\epsilon 4.30)$ nm, along with the MS fragmentation at m/z 299 ([M - HCOOMe - side-chain (C₈H₁₃)]⁺) and the NMR signals from the side-chain moiety (Table 1), suggested the presence of a (23*E*)- $\Delta^{23,25}$ -conjugated diene system in the side-chain of 1.11 The above evidence coupled with the analysis of ¹H-¹H COSY, HMQC, and HMBC data (Supporting Information) indicated that 1 possesses a

 $(19R,23E)\text{-}5\beta,19\text{-}\text{epoxy-}19\text{-}\text{methoxycucurbita-}6,23,25\text{-}\text{trien-}3\beta\text{-}\text{ol}$ structure. The relative configuration was deduced from NOESY data (Figure 1) and molecular modeling.^12

Compound **2** showed $[M]^+$ at m/z 468.3605 ($C_{31}H_{48}O_3$) in the HREIMS. The ¹³C and ¹H NMR spectra of 2 showed the presence of four tertiary methyl, a secondary O-methyl, a secondary hydroxyl, a trisubstituted double bond, and an aldehyde group in the ring system of the molecule (Table 1). Compound **2** possesses the same side-chain as that of 1, viz., a $\Delta^{23,25}$ -di-unsaturated C₈ moiety, by the UV absorptions [λ_{max} 239 (ϵ 4.13), 231 (ϵ 4.29), 224 (ϵ 4.28)]¹¹ and the diagnostic MS fragmentation at m/z 299 ([M - $OMe - CHO - side-chain (C_8H_{13})]^+$) as well as by the NMR data (Table 1). Spectroscopic comparison of 2 with (23E)- 3β , 7β , 25-trihydroxycucurbita-5, 23-dien-19-al and (23*E*)-3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-dien-19-al^{5,13} suggested that **2** possesses a 3β -hydroxy- 7β -methoxycucurbit-5-en-19-al tetracyclic ring system. The above evidence and the analysis of ¹H-¹H COSY, HMQC, and HMBC data (Supporting Information) hence confirmed **2** as (23E)- 3β hydroxy-7 β -methoxycucurbita-5,23,25-trien-19-al. The rela-

10.1021/np040218p CCC: \$30.25 © 2005 American Chemical Society and American Society of Pharmacognosy Published on Web 05/10/2005

^{*} To whom correspondence should be addressed. Tel: 81-3-3259-0806. Fax: 81-3-3293-7572. E-mail: akihisa@chem.cst.nihon-u.ac.jp.

[†] College of Pharmacy, Nihon University.

^{*} College of Science and Technology, Nihon University.

[§] Kyoto Prefectural University of Medicine.

Table 1. ¹³C and ¹H NMR Data (δ values; C₅D₅N) for Triterpenoids 1-3

			1^{a}	2			3		
C no.	$\delta_{ m C}$		$\delta_{ ext{H}}{}^{b}$	$\delta_{ m C}$		$\delta_{ ext{H}}{}^{b}$	$\delta_{ m C}$		$\delta_{ m H}{}^b$
1	17.4	t	$1.49(\alpha), 1.53(\beta)$	21.6	t	1.69 (α), 2.01 (β)	21.6	t	1.69 (α), 2.01 (β)
2	27.2	t	1.78 (2H)	29.8	t	1.91 (β), 2.06 (α)	29.8	t	$1.90 \ (\beta), \ 2.05 \ (\alpha)$
3	76.2	d	3.41 (br d, 6.9)	75.6	d	3.81 (br s)	75.6	d	3.81 (br s)
4	37.3	s		42.0	s		42.0	s	
5	86.8	s		147.7	s		147.7	s	
6	131.0	d	5.99 (dd, 2.0, 9.8)	121.1	d	6.14 (d 5.4)	121.1	d	6.15 (d, 5.4)
7	132.8	d	5.65 (dd, 3.2, 9.8)	75.7	d	3.54 (dd 5.4, 9.7)	75.7	d	3.55 (br d, 5.4)
8	41.7	d	2.89 (dd, 3.2, 3.2)	45.8	d	2.22 (s)	45.8	d	2.23 (s)
9	48.0	s		50.3	s		50.3	s	
10	40.5	d	2.41 (dd, 7.6, 10.7)	36.7	d	2.63	36.8	d	2.65
11	23.2	t	1.60, 1.76	22.6	t	$1.54(\alpha), 2.65(\beta)$	22.6	t	$1.54(\alpha), 2.64(\beta)$
12	30.6	t	1.62 (2H)	29.3	t	1.61 (2H)	29.4	t	1.60 (2H)
13	45.1	s		45.9	s		45.9	s	
14	48.3	s		48.0	s		47.9	s	
15	33.5	t	1.34, 1.40	35.1	t	1.35 (2H)	35.1	t	1.35 (2H)
16	28.1	t	$1.39(\alpha), 1.97(\beta)$	27.8	t	1.36 (α), 1.95 (β)	27.7	t	1.36 (α), 1.95 (β)
17	50.3	d	1.46	50.5	d	1.57	50.3	d	1.56
18	14.7	q	0.88 (s)	15.0	q	0.94 (s)	15.0	q	0.95 (s)
19	112.1	d	4.65 (s)	207.2	d	10.30 (s)	207.2	d	10.31 (s)
20	36.6	d	1.55	36.8	d	1.55	36.4	d	1.55
21	18.8	\mathbf{q}	0.91 (d, 6.3)	18.9	q	0.98 (d, 5.9)	19.0	q	1.00 (d, 5.9)
22	39.8	t	1.81, 2.26	40.1	t	1.88, 2.32	39.7	t	1.85, 2.24
23	129.3	d	5.61 (br d, 15.6)	129.7	d	5.78 (ddd, 6.1, 7.7, 15.6)	128.4	d	5.66 (ddd, 5.4, 8.3, 15.8)
24	134.2	d	6.12 (d, 15.6)	134.8	d	6.32 (d, 15.6)	137.8	d	5.57 (d, 15.8)
25	142.2	s		142.5	s		74.9	s	
26	114.1	t	4.86 (2H, s)	114.7	t	4.98 (s), 5.03 (s)	26.1	q	1.34 (s)
27	18.7	\mathbf{q}	1.84(s)	19	\mathbf{q}	1.92 (s)	26.5	q	1.34(s)
28	24.1	\mathbf{q}	0.85(s)	27.3	\mathbf{q}	1.17 (s)	27.3	q	1.17 (s)
29	20.5	\mathbf{q}	1.22 (s)	26.2	\mathbf{q}	1.50(s)	26.2	q	1.50 (s)
30	19.8	\mathbf{q}	0.86 (s)	18.3	\mathbf{q}	0.81 (s)	18.2	q	0.81 (s)
3-OH			3.95 (br d, 9.5)						
7-OMe				55.9	q	3.28(s)	55.9	q	3.29 (s)
19-OMe	58.2	q	3.44(s)						
25-OMe							50.2	q	3.23 (s)

^a Determined in CDCl₃. ^b J values (Hz) determined are shown in parentheses.

tive configuration of ${\bf 2}$ was deduced from NOESY data (Figure 1) and molecular modeling.^{12}

The molecular formula of compound 3 was determined as $C_{32}H_{52}O_4$ from its HREIMS ([M - H₂O]⁺, *m/z* 482.3759) and FABMS ($[M + K]^+$, m/z 539). The ¹³C and ¹H NMR signals for the ring system of 3 were very similar to those of **2** (Table 1), suggesting that it also possesses a 3β hydroxy-7 β -methoxycucurbit-5-en-19-al tetracyclic ring system. The NMR data for the side-chain moiety (Table 1) of compound 3 showed the presence of two tertiary methyls, a secondary methyl, an O-methyl, and a trans-oriented disubstituted double bond, which are consistent with a (23E)-25-methoxy- Δ^{23} -unsaturated C₈ moiety.⁹ Thus, the structure of **3** is (23E)-3 β -hydroxy-7 β ,25-dimethoxycucurbita-5,23-dien-19-al, which was supported from the EIMS fragmentation and the analysis of ¹H–¹H COSY, HMQC, and HMBC data (Supporting Information) as well as from the phase-sensitive NOESY experiment (Figure 1).

Two other triterpenoids, **4** and **5**, isolated in this study were identified as (19R,23E)- 5β ,19-epoxy-19,25-dimethoxycucurbita-6,23-dien- 3β -ol and (19R,23E)- 5β ,19-epoxy-19methoxycucurbita-6,23-diene- 3β ,25-diol, respectively, on the basis of comparison with the literature data.⁹

Although a sterol possessing a $\Delta^{23,25}$ -conjugated diene system is known as a synthetic (23*E*)-cholesta-5,23,25trien-3 β -ol,¹¹ this is the first report of the isolation of triterpenoids possessing a $\Delta^{23,25}$ -conjugated diene system, viz., **1** and **2**, from a natural source.

Experimental Section

General Experimental Procedures. Crystallizations were performed in MeOH, and melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO P-1030 polarimeter in acetone or in CHCl₃ at 25 °C. UV spectra on a Shimadzu UV-2200 spectrometer and IR spectra on a JASCO FTIR-300E spectrometer were recorded in EtOH and KBr disks, respectively. NMR spectra were recorded with a JEOL ECA-600 spectrometer at 600 MHz (¹H NMR) and 150 MHz $(^{13}C NMR)$ in C_5D_5N or in $CDCl_3$ with tetramethylsilane as internal standard. EIMS (70 eV) and HREIMS were recorded on a JEOL JMS-BU20 spectrometer using a direct inlet system. FABMS and HRFABMS were obtained with a JEOL JMS-BU20 spectrometer using glycerol as a matrix. Silica gel (Kieselgel 60, 230-400 mesh, Merck) was used for open column chromatography. Reversed-phase preparative HPLC was carried out on an octadecyl silica column (Pegasil ODS II column, 25 cm × 10 mm i.d.; Senshu Scientific Co., Ltd., Tokyo, Japan) at 25 °C with MeOH-H₂O-acetic acid (99:1:1, v/v/v) as mobile phase at 2 mL/min.

Materials. Sliced and dried fresh whole fruit of "nigauri" (*M. charantia*), cultivated in Okinawa prefecture, Japan, in the summer of 2002, used in this study was purchased from Taiyo Co., Ltd. (Osaka, Japan).

Isolation. Sliced and dried fruit material of *M. charantia* (1.5 kg) was extracted with MeOH, which yielded the extract (108 g) after evaporation of the solvent in vacuo. The extract was partitioned between H_2O and EtOAc, giving the EtOAc soluble fraction (15 g). The EtOAc fraction was further partitioned between *n*-hexane–MeOH–H₂O (19:19:1), which yielded *n*-hexane (4.2 g) and MeOH–H₂O (9.8 g) soluble fractions. Column chromatography on silica gel (400 g) of the *n*-hexane fraction, eluted with *n*-hexane–EtOAc [1:0 (0.5 L), 19:1 (2.4 L), 9:2 (7.2 L), 4:1 (2.3 L), 7:3 (0.2 L), 1:1 (0.4 L), 1:4 (0.9 L), 0:1 (0.5 L)], afforded seven fractions (A–G): A (21 mg), B (380 mg), C (267 mg), D (1100 mg), E (517 mg), F (113 mg), and G (1930 mg). Fraction D, on further chromatography on silica gel (100 g), yielded six fractions (Da–Df). The second

Figure 1. Major NOE correlations (\leftrightarrow) for triterpenoids 1–3.

fraction Db (73 mg) was subjected to preparative HPLC, which yielded compound 1 (8.5 mg; retention time (t_R) 14.2 min). Fraction E was further chromatographed on silica gel (50 g) to yield nine fractions (Ea-Ei). Preparative HPLC of the fourth eluted fraction Ed (69 mg), the fifth eluted fraction Ee (21 mg), and the seventh eluted fraction Eg (102 mg) eventually afforded compounds 4 (4.5 mg; $t_{\rm R}$ 13.3 min), 5 (4.6 mg; $t_{\rm R}$ 14.8 min), and **2** (2.9 mg; $t_{\rm R}$ 24.8 min) and **3** (2.8 mg; $t_{\rm R}$ 14.4 min), respectively.

(23E)-5β,19-Epoxy-19-methoxycucurbita-6,23,25-trien-**3***β***-ol** (1): fine needles, mp 166–169 °C; $[\alpha]^{25}_{D}$ –74.0° (acetone; *c* 0.10); UV (EtOH) λ_{max} 240 (ϵ 4.08), 231 (ϵ 4.33), 225 (ϵ 4.30); IR (KBr) v_{max} 3479 (OH), 2941, 1650, 1605 (conjugated diene), 879 (>C=CH₂) cm⁻¹; ¹³C and ¹H NMR data, see Table 1; EIMS

m/z 408 [M - HCOOMe]+ (100), 393 (m/z 408 - Me) (14), 390 $(m/z 408 - H_2O)$ (20), 389 (22), 375 $(m/z 408 - Me - H_2O)$ (17), 327 (m/z 408 – (C-22-C-27)) (10), 309 (m/z 327 – H₂O) (43), 299 (m/z 408 - side-chain (C₈H₁₃)) (32), 281 (m/z 299 - H_2O) (38), 172 (59), 109 $[C_8H_{13}]^+$ (57); FABMS m/z 469 [M +H]⁺, 507 [M + K]⁺; HRFABMS m/z 507.3244 [M + K]⁺ (calcd for C₃₁H₄₈O₃·K, 507.3240).

(23E)-3β-Hydroxy-7β-methoxycucurbita-5,23,25-trien-**19-al (2):** fine needles, mp 127–130 °C; [α]²⁵_D +19.1° (CHCl₃; c 0.21); UV (EtOH) $\lambda_{max} 239 (\epsilon 4.13), 231 (\epsilon 4.29), 224 (\epsilon 4.28);$ IR (KBr) ν_{max} 3445 (OH), 2928, 1713 (-CHO), 1670, 1610 (conjugated diene), 880 (>C=CH₂), 820 (>C=CH-) cm⁻¹; ¹³C and ¹H NMR data, see Table 1; EIMS m/z 468 [M]⁺ (12), 450 $[M - H_2O]^+(7), 436 [M - MeOH]^+(4), 408 [M - OMe - CHO]^+$ (100), 393 (m/z 408 - Me) (10), 390 (10), 375 (m/z 408 - Me -H₂O) (12), 327 (m/z 408 - (C-22-C-27)) (9), 309 (m/z 327 - $H_2O(35)$, 299 (m/z 408 - side-chain (C₈H₁₃)) (17), 281 (m/z 299 – H₂O) (23), 172 (61), 109 $[C_8H_{13}]^+$ (75); HREIMS m/z468.3605 $[M]^+$ (calcd for C₃₁H₄₈O₃, 468.3603)

(23E)-3 β -Hydroxy-7 β ,25-dimethoxycucurbita-5,23-dien-**19-al (3):** fine needles, mp 104–107 °C; [α]²⁵_D +25.9° (CHCl₃; *c* 0.26); IR (KBr) *v*_{max} 3444 (OH), 2929, 1712 (-CHO), 845, 820 (>C=CH-) cm⁻¹; ¹³C and ¹H NMR data, see Table 1; EIMS m/z 482 $[M - H_2O]^+$ (6), 440 $[M - H_2O - MeOH]^+$ (74), 421 (22), 408 $[M - H_2O - 2MeOH]^+$ (100), 393 (m/z 408 - Me)(11), 389 (15), 375 (m/z 408 – Me – H₂O) (16), 309 (25), 299 $(m/z 408 - \text{side-chain} (C_8H_{13}))$ (17), 293 (13), 281 (m/z 299 - m/z)H₂O) (19), 172 (94), 109 (86), 99 (100); HREIMS m/z 482.3759 $[M - H_2O]^+$ (calcd for $C_{32}H_{50}O_3$, 482.3760); FABMS m/z 539 $[M + K]^+$, corresponding to the formula $C_{32}H_{52}O_4 \cdot K$.

Supporting Information Available: ¹³C and ¹H NMR and HMBC NMR data for 1-3. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Raman, A.; Lau, C. Phytomedicine 1996, 2, 349-362.
- Jayasooriya, A. P.; Sakono, M.; Yukizaki, C.; Kawano, M.; Yamamoto, K.; Fukuda, N. J. Ethnopharmacol. 2000, 72, 331-336.
- Okabe, H.; Miyahara, Y.; Yamauchi, T. Chem. Pharm. Bull. 1982, 30, 3977-3986. (3)
- (4) Okabe, H.; Miyahara, Y.; Yamauchi, T. Chem. Pharm. Bull. 1982, 30, 4334-4340.
- (5)Fatope, M. O.; Takeda, Y.; Yamashita, H.; Okabe, H.; Yamauchi, T. J. Nat. Prod. 1990, 53, 1491–1497
- (6) Murakami, T.; Emoto, A.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Akihisa, T.; Yasukawa, K. In Studies in Natural Products Chemistry,
- Vol. 25. Bioactive Natural Products (Part F); Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2001; pp 43-87.
- Akihisa, T.; Yasukawa, K.; Tokuda, H. In Studies in Natural Products Chemistry, Vol. 29. Bioactive Natural Products (Part J); Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2003; pp 73–126.
- (9) Mulholland, D. A.; Sewram, V.; Osborne, R.; Pegel, K. H.; Connolly, J. D. *Phytochemistry* **1997**, *45*, 391–395.
 (10) Goad, L. J.; Goodwin, T. W. *Prog. Phytochem.* **1972**, *3*, 113–198.
- (11) Fujimoto, Y.; Ikekawa, N. Chem. Pharm. Bull. 1976, 24, 825-828. (12) Conformational analysis: Global minimum conformation search of compounds 1-3 was done using CAChe CONFLEX with MM2 force field (CAChe version 5.5; Fujitsu Co., Tokyo, Japan). Yasuda, M.; Iwamoto, M.; Okabe, H.; Yamauchi, T. *Chem. Pharm*.
- Bull. 1984, 32, 2044-2047.

NP040218P